Wednesday, February 4, 2015

Ten New Findings that Will Revolutionize Architecture

The analogy to medical science is especially apt. This application of settlement science must be implemented with art and craft, just as the science of medicine must be applied by medical practitioners with art and craft. Like the profession of medicine, it must be rooted in evidence-based methods, and it must have as its foundation a professional standard of care for the wellbeing of others.

But this implies a deep re-evaluation, and a reform of failing professional models. It implies a real revolution, in methodology, in technology, in conceptions of “modernity” — and ultimately, in the very idea of design.

What are these insights from the sciences? We (a physicist-mathematician and an urban philosopher) summarize ten of them, which are discussed in more detail, along with others, in the new book Design for a Living Planet.
© Nikos Salingaros

1. Complex Adaptive Systems
A key lesson for designers of all kinds is that product design can’t really be separated from environmental design. We are all, in some sense, environmental designers, working in the human environment. Since every system is only partially closed, we have to find ways to work on these systems as open systems — that is, as parts of larger, optimizing wholes. Routine failure to do so has led to our ecological misfortunes.

2. Self-organization
Any design that seeks to impose a “standard”, “formal”, pre-conceived, or self-referential architectural or urban typology is fundamentally flawed, because it has not computed an adaptive configuration starting from the local conditions. Much of post World-War II urban planning has to be rejected on the basis of this result!

3. The Network City
We can think of built urban structure and infrastructure as a city’s “hardware” — a matrix that can be changed only after considerable time and expense. The “software” is what can move around, connect, exchange information, etc. In a nutshell, as long as we have access to unlimited resources of energy and supporting resources, we can make a city with poor “hardware” run by pushing the network connectivity burden onto the “software”. But, as computer designers know only too well, using poorly-designed hardware with increasingly complex software is asking for trouble — it is only a matter of time before the system becomes unmanageable.

4. The Geometry of Resilience
Differentiation produces familiar geometries, such as local symmetry: for example, our bodies have two hands and two legs. The ability to perceive this kind of symmetry (along with other related kinds) is a very important aspect of our evolutionary psychology, and an environmental attribute that promotes human wellbeing. The presence of symmetry generated through differentiation also appears to be essential to structural resilience; without it, the result is lifeless rigidity. Differentiation introduces contrast, and symmetries introduce groupings, while counteracting uniformity.

5. Agile Design
The complex pattern of bird flocks, to take just one example, is not created out of a kind of rigid blueprint, specifying the complex shape at any given instant. That would be an overwhelmingly vast set of instructions. Rather, each bird has only a few simple rules for maintaining its position relative to its leader and neighbors. From the interaction of these simple instructions, the beautiful complex geometric patterns of the flock are generated.

6. Scaling and Fractals
These repetitive perforations at smaller scales — the fractal loading that results from the characteristic “generative algorithm” of fractal structure — will often continue on down to the scales of detail and ornament. Why is this? It seems likely that we, the users, making our way through these places find such complex environments (complex in a very precisely ordered sense) easier to comprehend, more intelligible, more usefully organized, and more beautiful.

7. Evidence-Based Design
The exact final product is incompletely known at the beginning of the computation; only certain of its important qualities are decided beforehand, and attaining them drives the design to completion. If the product is completely known at the beginning, there can be no adaptation. It is likely to fail on human terms.

8. Biophilia
The implications are potentially earth-shattering: aesthetic design choices are not just a matter of the designer’s artistic expression, for users to enjoy or not enjoy — together with other factors, they can improve, or damage, the health of users.

9. Computational Irreducibility
In the very simplest, computationally reducible systems (like simple math problems) we don’t need iterated computational effort, but can shortcut to the final state — i.e., use a formula. But an adaptive design process is computationally irreducible, and we are fooling ourselves if we think that we can impose a template, or somehow reach a final configuration through a formula or shortcut. This is the “reducibility fallacy”, into which most architects and urbanists of the 20th- and so far in the 21st-centuries have fallen into, with the consequence that their designs are non-adaptive and ultimately dysfunctional.

10. The Evolution of Patterns
Our mechanically-minded industrial age is obsessed with novelty, because it offers the power of marketing. New! Improved! A corollary is the idea that what is old must be discarded, rejected as “inauthentic” or “not modern.” But the sciences show us a very different Universe: one filled with recurrence, evolution, and patterns that endure for many millions of years, or are regenerated through genetic processes. This is how evolution adapts and succeeds over eons. It is a lesson that human architecture will have to learn, or re-learn — with far-reaching implications.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Featured Post

Hovdetoppen - Mjøslandets største øyensår

Da vi forlot Gjøvik i 2018, var planen å flytte tilbake så raskt råd var, men så oppdaget jeg plutselig store skogsmaskiner oppe på det unik...